Руководство по атмосфере

Материал из Fluffy Frontier
Gtanslate-icon.png Моя твоя не понимать!

Эта страница была украдена с TG и за ее перевод и актуализацию еще никто не взялся.

NPA.png Этот раздел требует изображение. Вы можете помочь, загрузив новые изображения. NPA.png


Это гайд на работу атмосферного отдела. При правильной настройке Атмосия может обеспечить станцию воздухом в практически любой ситуации. При неправильной настройке она может или впустую занимать драгоценное место, или даже сжечь станцию дотла.


Мы пройдёмся по отделу шаг за шагом, играя со всеми понятиями. Сначала мы обсудим практические вопросы, затем двинемся к синтезу газов, а напоследок затронем то, как и для чего существует этот отдел. В этом гайде вы узнаете, как превратить отдел из бесполезной траты пространства в по-настоящему полезное место. Мы рассмотрим всю теорию, даже если это и будет трудно, для того, чтобы вы понимали, как работает атмосфера, и были готовы ко всем нестандартным ситуациям.

You miss something...slavic in this.

See also:

PortablePump.png Atmospherics items

Атмосферный 101: Базовая теория, планировка и транспортировка газа

У вас, дорогой атмосферный техник, есть одна главная задача: Делать станцию не слишком горячей, не слишком холодной, под стабильным и комфортным давлением и пригодной для дыхания. Вы также можете синтезировать сложные газы, но если вы забудете об основных обязанностях, то это сделает вас не лучшим работником.

Обычные трубы

В наше время трубы больше не имеют направления, к которому они будут подсоединяться. Они будут автоматически подключаться ко всем другим трубам того же цвета и уровня расположения. Трубы и аппаратура цвета Omni (светло-серый цвет, в самом начале выбора цветов) будут подключаться ко всем трубам своего уровня. Вам обязательно надо держать это в голове, чтобы случайно не соединить две трубы от абсолютно разных систем. Никто ведь не хочет дышать углекислым газом, верно? Эту функцию обычно называют "умными трубами". Всем трубам и устройствам могут быть назначены цвет и уровень расположения. Даже большие атмосферные устройства по умолчанию покрашены в какой-то цвет.

В интерфейсе портативного раздатчика труб, он же Rapid Pipe Dispenser (или RPD), вы можете заметить несколько зелёных стрелочек слева. При помощи них вы можете отключить трубам возможность присоединяться в определённых направлениях для тех труб, которые вы будете размещать. Это невероятно удобно, когда вы работаете в тесных пространствах, где никак не получится не положить две трубы одного цвета рядом или друг на друга. Нажатие по кружочку в центре автоматически сбросит настройки к стандартному подключению.

Если вам нужно соединить два трубы разных цветов, то вам может помочь адаптер цветов (он же color adapter), если вы разместите его на месте обычной трубы. Впрочем, трубы цвета будут работать ровно так же, как и любые устройства, поставленные на этот цвет, к примеру насос или помпа.

Запомните, труба снабжения станции воздухом синяя и находится на 4 слое, а труба очистки красная и лежит на 2 слое. В вашем распоряжении множество цветов и всего 5 слоёв.

Атмосферные устройства

Эта часть будет посвящена функциям и некоторым особенностям различных труб и устройств. Некоторые детали будут опущены, но базовые функции будут оговорены полностью.

Dvalve.pngЦифровой клапан (Digital Valve)

Клапан, открываемый при нажатии. Подсоединяется к двум трубам и разделяет их. Не имеет никакой задержки при транспортировке газов и в открытом состоянии становится обычной трубой. Имеет ёмкость в 200 литров с обеих сторон. ЭЭтот насос могут использовать и карбоны (обычные члены экипажа) и силиконы (ИИ и киборги).

Mvalve.pngРучной клапан (Manual Valve)

Аналогичен цифровому клапану, однако не может управляться силиконами.

Pressure valve.pngКлапан давления (Pressure Valve)

Активируемый клапан, которой пропускает газ только если давление на его входе будет больше установленного.

Ppump.pngНасос давления (Pressure Pump)

Как и все насосы, разделяет сети труб если их более ничего не соединяет. Имеет ограничение пропускной способности в 4500 КПа. Все насосы перекачивает содержимое внутри себя со стороны входа к стороне выхода. Обе стороны имеют объём в 200 литров. Насос давления будет создавать в своей выходной части указанное давление, используя газ со стороны входа. После создания там нужного давления, этот газ будет равномерно распределяться по всей последующей сети труб, каждый тик. Если сеть большая, то накачиваться она будет медленно, и наоборот. Их работа такова, что они будут закачивать газ со входа к выходу каждый тик. В связи с этим они будут постепенно замедляться, подходя к указанному давлению. Через долгое время работы они будут очень близки к указанному давлению, но не достигнут его.

Vpump.pngНасос объёма (Volume Pump)

Насос объёма схож с насосом давления, но работает иначе. Его ограничение уже 9000 КПа. Впрочем, это сыграет роль только если со стороны выхода давление уже более 9000 КПа. Если давление на выходе менее 9000 КПа, то насос будет отлично работать и может даже случайно превысить это значение. Отличие от насоса давления, насос объёма имеет основной показатель в литрах в секунду. Объём этого насоса ровно такой же, по 200 литров с каждой стороны, а вы будете указывать, как много газа из этого объёма будет перекачиваться на другую сторону. Максимальная скорость в 200 литров в секунду будет перекачивать вообще весь поступивший за тик в насос газ, а поэтому будет всегда обгонять насос давления. Может быть разогнан при помощи мультитула (multitool), что заставит его иметь ограничение в 9000 КПа только со стороны входа, а значит, почти бесконечная закачка! Однако, это заставит аж 10% проходящего газа вырываться из насоса в окружающую среду.

Passpump.pngПассивный насос/затвор (Passive Pump/Gate)

Удивительная комбинация насоса и вентиля. Работает до заданного давления, максимум 4500 КПа. Никогда не сделает ничего более, чем уравнит две соединённые сети труб, как и обычный клапан. Однако, работает это устройство лишь в одну сторону. Думайте о них как об односторонних вентилях с ограничением.

Vent.pngОдиночная вентиляция (Unary Vent)

Вентиляция будет закачивать газ в комнату, в которой находится, согласно настройкам воздушной сигнализации (air alarm) в комнате. Две самые главные настройки это проверка внешнего (External) и внутреннего (Internal) давлений. Внешняя проверка будет проверять давление в клетке с вентиляцией и выпускать газ из труб в воздух тогда, когда это давление меньше назначенного. Максимальное ограничение внешнего давления - 5066 КПа. При приближении к указанной точке вентиляция будет замедляться. Потому что закачивать она будет мало, а потом это небольшое количество будет растекаться по комнате. Внутренняя проверка будет закачивать газ в комнату, стараясь приблизиться к заданному показанию давления в трубе. Примеры: вентиляция поставлена на внешнюю проверку на 200, а значит, будет закачивать газ в комнату, пока давление в ней не тсанет равно 200 КПа. Вентиляция, установленная на внутреннюю проверку на 300 будет закачивать в комнату газ, пока давление в трубе не снизится до 300 КПа, вне зависимости от того, что будет происходить в комнате. Отсюда можно сделать вывод, что установка внутренней проверки на 0 заставит вентиляцию постоянно закачивать газ в комнату на полной силе, опустошая трубу. Аналогичный эффект достигается и выключением обеих проверок. Даже при сильном давлении у вентиляции будет ограничение по скорости закачки воздуха в помещение.

Надо отметить, что вентиляция может и выкачивать газ из помещения в трубу, как скруббер (Scrubber), о котором мы поговорим чуть позже, если установить такую настройку на сигнализации. Чисто в теории вентиляция даже быстрее, чем скруббер, однако, она не может засасывать газы в зоне 3 на 3, поэтому она проигрывает в скорости в больших помещениях и при низком давлении. Ограничения по давлению при такой выкачке у вентиляции нет, так что в трубе можно получить невероятно весёлые значения давления.

Vent passive.pngПассивная вентиляция (Passive Vent)

Незапитанная вентиляция, устанавливающая баланс внутреннего и внешнего давления. Можете считать, что это просто труба, которая открытым образом выходит в атмосферу. С ней никак нельзя взаимодействовать и она не может быть закрыта. Не имеет вообще никаких ограничений по давлению, в связи с чем может использоваться для весёлых махинаций.

Atmos injector.pngИнжектор (Injector)

Инжектор схож с вентиляцией лишь в том, что выпускает газ в окружающую среду. Различие в том, что он управляется не с воздушной сигнализации, а руками, из состояния включить-выключить, либо же вы познаете дзен и научитесь подключать его к атмосферным консолям для более детального управления. Пример такой привязки вы можете увидеть в токсинной в отделе РнД. Кроме этого, инжектор вновь работает по принципу закачки л/с, почти как насос объёма. И так же, как и насос объёма, будет более быстрым, чем его сестра, вентиляция. Не имеет ограничения по давлению и всегда будет выплёскивать газ наружу до космических значений. И это всё по цене невозможности управления с сигнализации.

Scrub.pngСкруббер/газоочиститель (Scrubber)

Такая же вентиляция, но наоборот. Засасывает газы из атмосферы в подключённую трубу. Управляется и настраивается при помощи воздушной сигнализации. Засасывает газ в своей клетке на обычном режиме и в радиусе 3 на 3 в расширенном режиме (Expanded). Установка режима на сифон (Siphon) заставит его засасывать вообще все газы, а не только выбранные. В противном случае засасываться внутрь будут лишь те газы, которые выбраны на сигнализации для конкретного скруббера. Чем больше газов выбрано для фильтрации из воздуха, тем больше энергии он будет потреблять. Скруббер тоже имеет лимит давления в 5000 КПа и не будет засасывать газ, если подключён к сети с давлением выше этого значения.

Atmos filter.pngФильтр (Filter)

Фильтр - первое устройство с тремя соединениями из этого списка. Внутри него может быть выбрано любое количество газов и все они будут перекачиваться вбок, относительно основного направления. Все невыбранные газы будут пропущены вперёд. Если ничего не выбрано, то все газы будут пропускаться вперёд, что сделает из фильтра обычный насос на давление. Фильтр работает с л/с, поэтому никогда не замедляется, однако имеет ограничение в 4500 КПа. Это означает, что если с любой стороны (боковая или основная) давление превысит 4500 КПа, то весь фильтр перестанет работать. Поэтому для его работы вы обязаны держать давление со всех выходов ниже 4500 КПа.

Atmos mixer.pngСмеситель (Mixer)

Смеситель тоже требует 3 трубы для функционирования, как и фильтр. Смеситель будет смешивать газы из двух поступающих труб в указанных пользователем пропорциях. Изначально 50 на 50. Node 1 - это прямая труба, Node 2 - боковая. Оба входа должны иметь газ в себе, чтобы смеситель работал, за исключением установки 100% на один из входов, тогда со второго входа газ не будет обязательным к подаче. Смеситель основан на давлении, со всеми вытекающими. Максимум - 4500 КПа с выхода. На смешивание влияет температура в связи с законом идеального газа. Если один из входов будет очень горячим, то газа с него в молях будет пропускаться куда меньше, чем с холодного входа. Если вам нужна идеальная смесь, удостоверьтесь, что оба входа имеют одинаковую температуру.

Heat exchanger.pngТеплообменник (Heat Exchanger)

Поместите два таких теплообменника лицом друг к другу и они начнут обмениваться теплом газов внутри себя. Этот теплообменник никак не связан с теплообменными трубами, не путайте их.

He pipe.pngТруба-теплообменник (Heat Exchange pipes)

Действует, как и обычная труба, но с одной особенностью: она будет пытаться уравновесить температуру газа в трубе и атмосферы вокруг себя. Скорость теплообмена связана с теплоёмкостью газа, об этом тоже будет сказано позже. Большая теплоёмкость обозначает, что в каждом градусе запасается больше энергии. Следовательно, этот газ будет хорошо нагревать или охлаждать что-то, сам при этом слабо меняя температуру. Низкая теплоёмкость будет быстро отдавать и принимать небольшие объёмы энергии и моментально изменять температуру. Такие трубы чаще всего используются для работы суперматерии, чтобы охлаждать газ в космосе или в снегу. Никто не мешает разместить эти трубы и в любом помещении для контроля температуры. Имеют недостаток в виде недобивания температур в 10К. Космос имеет температуру в 2,7К, но газ будет охлаждаться примерно до 22,7К.

He junc.pngПереходник теплообменной трубы (Heat Exchange Junction)

Используется вместо обычной трубы, чтобы обозначить переход от обычных труб к теплообменным. Должен находиться между ними, так как является именно переходником. Пусть вас не пугает его внешний вид, на самом деле он не обменивает температуру газа над собой, а потому его можно располагать где угодно и не бояться изменения температуры в этом месте.

Manifold.pngАдаптер слоёв (Layer Adapter)

Соединяет 5 разных слоёв труб. Тоже может быть покрашен, чтобы взаимодействовать лишь с одним цветом, или может быть оставлен в белом цвете (Omni), чобы взаимодействовать с любыми трубами. Напомним, что труба очистки воздуха красная и на втором уровне, а труба снабжения станции на 4 и синего цвета. Остальные трубы чаще всего на 3 уровне. Без этого устройства трубы никак не будут контактировать друг с другом, если расположены на разных уровнях, вне зависимости от их цветов.

Ss13 atmos meter.png Газовый счётчик (Atmos Meter)

Файл:Atmos Thermal Readings.png
Фиолетовый цвет - холодный газ, зелёный - нормальной температуры, красный - высокой.

Обычно присоединяется к трубам. Этот полезный девайс может показать вам (на шифт клик) давление в трубе и температуру газов внутри. Цвет счётчика будет визуально показывать температуру газа, а высота столбика скажет о давлении. Если столбик достигает вершины, то справа загорается лампочка, а столбик сбрасывается вниз, больше лампочек - больше давление.

Canister.pngКанистры (Canister)

Канистры, они же canister или баллоны, используются для хранения и транспортировки газа. Будьте очень осторожны с ними, если решите закачать в них горячие газы или провести экзотермические (производящие тепло) реакции, так как у них есть пределы по давлению и температуре.

Заготовка канистры (Unfinished canister frame) производится из 5 листов металла, а затем завершается ещё 5 листами при нажатии по заготовке. Канистры имеют ограничения по давлению в 500'000 КПа и по температуре в 10'000 К.

Канистры также имеют энергетический щит. При включении он будет удерживать газы внутри от повреждения канистры, позволяя превосходить вышеупомянутые ограничения. Во включённом режиме щит будет потреблять энергию. Чем выше температура и давление внутри, тем больше потребление энергии (максимум должен приходиться куда-то к 25 kW. Энергия для запитки канистры будет потребляться через ближайший APC. Если таковой отсутствует или не работает, то будет расходоваться внутренняя батарея канистры.

Батарея может быть заменена путём открытия слота батареи при помощи отвёртки (screwdriver). После этого вы можете поставить новую батарею, если её не было, или же вытащить старую при помощи лома (crowbar). Учтите, эти батареи не будут сами дозаряжаться после разрядки.

Резервуар высокого давления (Stationary Tanks)

Такие резервуары не могут быть передвинуты. Этапы создания таковы:

  • Metal r.pngСоздать заготовку (Large Gas Tank) из 4 листов пластали (plasteel).
  • Metal.pngДобавить 12 штук любого материала на ваш выбор.
  • Wrench.pngПрикрутить заготовку к полу при помощи гаечного ключа (wrench)
  • Welder.pngЗаварить заготовку сваркой (Welding tool)

Их преимуществом является объём в 2500L и высокое максимальное давление, которое будет зависеть от выбранного материала. В основном ограничение будет около 46 МПа, но использование стекла в изготовлении снизит это ограничение до всего 5 МПа, а вот пласталь повысит его до 69 МПа. Создать вход или выход трубы для такого хранилища можно путём нажатия по нему гаечным ключом с соответствующей стороны.

AirAlarm.pngРежимы воздушной сигнализации

  • Filtering - фильтрация. Установит вашу вентиляцию на обычный режим с привычным давлением снаружи. Скруберры будут фильтровать из атмосферы только углекислый газ.
  • Contaminated - загрязнённый режим. Установит вентиляцию в нормальный режим. Скруберры будут высасывать вообще все газы, кроме кислорода и азота в расширенном диапазоне.
  • Draught - режим вытяжки. Вентиляция встаёт в усиленный режим и начинает закачивать больше газа в помещение. Скрубберы начинают засасывать вообще все газы в обычном диапазоне.
  • Refill - режим ускоренного наполнения. Все вентиляции утроят свой выход газа. Помещение будет наполнено быстрее, но если не выключить этот режим, то помещение переполнится газом до 300 КПа.
  • Cycle - режим перезаполнения. Сначала быстро выкачает весь газ в помещении, а потом вновь заполнит его газом из труб. В середине процесса в помещении будет полный вакуум, будьте осторожны.
  • Siphon - режим сифона. Выключит вентиляцию и начнёт засасывать все газы через скрубберы.
  • Panic Siphon - режим экстренного сифона. Выключит вентиляцию и начнёт выкачку газов в расширенном диапазоне.
  • Off - выключено. Просто выключит все вентиляции и скрубберы.

Полезные советы

Скрубберы, вентиляционные отверстия, инжекторы, клапаны, насосы, фильтры и смесители можно безопасно откручивать, не проливая газ в атмосферу. Клапаны служат прекрасной альтернативой обычной прямой трубе, если необходимо обеспечить большую безопасность при работе с горячим газом.

Большинством оборудования можно управлять нажатиями CTRL+click и ALT+click. Первое будет включать и выключать оборудование, а второе назначать ему максимальную силу работы (до предела в 200 л/с или 4500 КПа).

Все устройства и трубы могут быть установлены в стену. Иногда бывает невероятно удобно проводить трубы через стены, как это, например, иногда реализуется у СМ.


Трубы, направленные во все четыре стороны, имеют такой же объём, как и две отдельные трубы, лежащие друг на друге: с севера на юг и с запада на восток. По этой причине самый оптимальный метод размещения теплообменных труб - используя направленные во все 4 стороны части по центру, а по бокам используя боковые и угловые части.

Нагреватели и охладители могут быть размещены прямо на трубах, в таком случае они тоже будут подключены. А ещё уровень трубы у холодильника или нагревателя можно менять при помощи мультитула (multitool) при открытой отвёрткой панели.

В связи с довольно медленной работой насосов, в большинстве случаев будет лучше не использовать их, разве что для определённых целей. Насосы на объём позволят вам быстро нагнать давление в какой-либо трубе, а лимит в 9000 КПа вам в этом поможет. Если же вам нужны определённые и чёткие показатели и полный контроль над давлением, то тогда уже лучше использовать насосы на давление. Используйте свою фантазию!

Очень, очень много вещей можно создать, играясь со слоями труб и переходниками между ними. Попробуйте использовать их в своих безумных идеях!

The Atmos Tools

Main page: Atmospherics items

Rapid Pipe Dispenser

This is your Rapid Pipe Dispenser. There are many like it, but this one is yours. The main tool of your trade, the RPD is what you use to generate new atmospheric devices. Use it in modifying the station's layout, in making new production compounds, in adding scrubbers and vents to various parts of the station, and much, much, more. Use it and use it well. Keep in mind that this device sparks when changing selections, and it sparks a lot. Sparks can create fires if there are flammable gases around.

Analyzer / BreathDeep Catridge

Where the RPD is your sword, the Analyzer Analyzer.png is your eye. Use this in identifying various gases in various pipelines (more on pipelines later), in analyzing the air around you, in identifying problems, harmful gases, and other various atmospheric related occurances. This is slightly less related to the job, but the Analyzer also has a barometric function; giving you information on incoming storms when Alt-Clicked on planetary environments.

ATMOS Resin

The Backpack Firefighter TankWaterbackpack atmos.png can switch modes to launch transparent ATMOS resin instead of extinguisher. This resin has the following effects:

  • Repairs hull breaches similarly to Metal Foam.
  • Cleans the air from toxins.
  • Normalises air temperature to room temperature (20°C or 293.15K).
  • Seals open vents (as if they were welded shut).
  • Removes slipperiness from floors (from water etc).
  • The foam itself is not slippery.

To use the Backpack Firefighter Tank, equip it on your backpack slot and click the new hud icon to take out the nozzleAtmos nozzle.png . You can then cycle modes between extinguisher, resin launcher and single tile resin launcher (foamer) by activating the nozzle in your hand. It spends water when used. Examine the nozzle to see water remaining. This anti-breach and firefighting tool can be ordered from cargo or found in atmospheric lockers.

ATMOS Holofan

The holofan Holofan.gifis a wonderful tool that can project up to 6 holographic barriers which block gas movement. You can use these holofans to isolate breaches, prevent a spill from getting worse, or even to do basic retooling of the atmospheric layout (such as using a holofan on a pressurized plasma pipe you are about to unwrench). Keep in mind however, that holofans don't block the superconduction (explained later) of hot gases and is less reliable in very high temperature environments, especially when fire is involved.

Thermal Imaging Goggles

A special mode can be found on your Tray scanner goggles found in your locker that will provide a HUD revealing the temperature of the surrounding turfs in a medium radius around you. The colors range from dark blue (freezing cold) to green (normal temp) to red (blazing hot). The goggles themselves can also be printed from the Engineering department's protolathe. The mode is useful for quickly identifying problem areas in a room, like where the source of a hull breach might be.

Atmospherics Layout

Файл:Simple image.png
A wise Atmos Tech once said: "just stare at the pipes until you get it."
"Simplified" picture of the Atmospherics pipe system. Yellow circles represent filters and the lightbrown circle represents the mixer.

Here are two pictures of the atmospheric pipe system. Right one is a "simplified" version of the left picture. Yellow circles representing the filters which filter out a certain gas from the Waste In -gasmix. The light yellow circle near the lower middle represents the mixer which mixes N2 and O2 into a breathable air mix.


Atmospherics is pretty simple, but the pipe layout makes it slightly confusing for the untrained eye. There are 4 major pipe "loops":

  • The dark blue pipe loop is the distribution loop. It sends air to all the vents on the station for the crew to breathe.


  • The cyan air mix pipe loop, which is specialized to mix and provide the air mix to the distribution loop, and is used to fill air pumps outside the front door of Atmospherics.


  • The red/green pipe loop, which retrieves the gas in the station via the air scrubbers (red loop) and passes them through a set of filters (green loop).


  • The yellow pipe loop, internal to Atmospherics, which is used for custom gas mixes that can be fed into the canister charging station in the middle of atmospherics, or fed into the mixing tank.


The tanks (the small rooms in space just outside of Atmos) of the station's atmospherics network, unlike in the rest of the station, are rooms filled with very high pressure of the appropriate gas. The output of these rooms are controlled by their respective Supply Control Computer, an on/off valve, and an output pump for each loop. Note that these rooms can be depleted, especially if someone makes a hole in a tank's external wall.


To understand how the breatheable air mix is mixed, try following these steps and looking at the map at the same time, it starts on the south end of Atmospherics, like so:

  1. The gasses are pumped through the cyan tubes from their respective tanks (N2, O2).
  2. They are mixed in the air tank (Air) to a 1/5 mix of O2 and N2.
  3. The breathable gas is then pumped through the cyan loop to the north of Atmospherics.
  4. And finally it's pumped into the dark blue distro loop and out to the station for everyone to breathe.


Next let's make up an example situation to see how the waste system works in action:

  1. Scientist Bill messes up and fills the Toxins Lab with plasma but fortunately manages to evacuate the room safely.
  2. Being an otherwise ideal situation Atmos-wise, the Toxins Lab's air scrubbers have been set to filter out all hazardous gases (they're not set by default, this has to be done through the Air Alarm manually or by asking the AI to do it) and plasma starts to get sucked through the scrubber into the waste pipes.
  3. The plasma arrives to the Waste In -loop (the red pipe loop) at Atmos. It travels south through the pipes, its first stop being the N2 Filter.
  4. If there was any Nitrogen in the waste gas, it would get filtered out here, and the rest of the gas continues its journey through the waste loop, same thing happening at every filter.
  5. The plasma finally reaches the Plasma Filter.
  6. Here the plasma gets extracted from the waste gas and pushed into the big plasma tank-room outside the windows.
  7. The plasma stays in the room until someone decides to pump it out.
  8. Scientist Bill by now notices that the Toxins Lab has no plasma anymore and is able to safely continue his work. Yay!


Setting Up Atmospherics

It's about time we stop with the theory and throw it out the window and get down to business. The Rapid Pipe Dispenser (found in your locker) can dispense and secure infinite pipes, and your wrench can disconnect and connect pipes to each other. There is a very old stationary Pipe Dispenser that can be found in the room as well, but it's way faster to to use the RPD.

Файл:Circled atmos.png
The dumbass-version of the Atmospheric pipe system. See the steps what each colored circle means.

Next up is a very simple step by step guide how to set up the Atmospherics pipe system to be (nearly) as efficient as possible. Despite popular belief by your neighbors the Station Engineers (and the rest of the unwashed masses in the station), Atmospherics NEEDS TO BE SET UP TO WORK WELL. It's similar to the Supermatter Engine in a way; you could just start the emitters and it might make some power, but doing that with no setup is terrible and probably prone to blowing up. While atmos likely isn't going to blow up, without prior adjustments it's terribly slow and very easily clogged.

Note that this is only one style how to set up the pipes, there are many ways and they all have their own pros and cons!


  • For the love of Nanotrasen, at least do this:
  1. Select a Volume Pump in your RPD and replace the green circled normal pump with a volume pump (or a valve if you are using the waste loop as a large volume mix chamber), making the waste gas -system >100x more efficient. We want the waste gas sucked from the station into the waste system as soon as possible!
  2. Set all red circled filters ON and set them to maximum pressure (200 L/s) so waste gases will actually be moved, if they're not already maxed out.


  • This is good as well:
  1. Go through the N2 and O2 (besides southern wall) and set their output to roughly 300 kPa. Maxing out the pumps to 4500 kPa drains all of atmos' gases way too quickly, there really isn't any reason to turn the pumps up to maximum unless you're flooding.
  2. Set the pumps next to the computers at 300 kPa also, so the gases being pushed out of the gas-room get moved fast too.
  3. Set the Air-computer's output to some amount over 300 kPa, the pumps automatically keep the gas throttled.
  4. Set the blue circled Air to Distribution pump to something around 800 kPa to fill up the air distribution loop. Don't max this one out, unless you want all your air to end up in the pipes (could be very annoying to filter out all of that gas if someone were to put dangerous gas in the pipes).
  5. If there's a thermomachine in the distribution room connected to the air pipe, it also can't hurt to heat it up a number of degrees so the station gets warm air in the event of a breach.


Pros and cons of this whole setup:

+ Quick toxin filtering: In case of a toxin leak, waste gas will be sucked out quickly (if the area's air alarms are set to filter out all the toxins, that is, by default they are NOT filtering anything besides CO2).
+ Quick repressurization: In case of a breach, air will be poured out with a nice pace, helping you re-pressurize the room quicker after the breach is fixed. The refill setting on the air alarm will also actually work with the added pressure in the distro pipe.
+ Reduced pipe sabotaging: With this setup, its harder for the grifflords to fuck up pipes in the maintenance tunnels. In a room with the default 101.3 kPa atmospheric pressure, pipes with more than 303.9 kPa pressure fling the unwrencher in a random direction.
- Air Alarm sabotages: The station is more vulnerable for sabotage through air alarms. Someone can quite easily hack an air alarm somewhere and set the vents to push out air at maximum pressure, resulting in over-pressurization.
- Space wind: In case of a breach, until the hole is fixed, you'll probably spend a small while fighting against the huge air current, a.k.a. "space wind", if you don't switch the vents off during the repair. This is mostly just annoying. to deal with this, find a pair of magboots.
- Very slow pipe manipulating: If you suddenly have to modify any of the distribution pipes around the station, you need to lower the pressure to under 303.9 kPa if you don't want to be flung around like a leaf in the space wind, which can take a long time.

One extra thing to keep in mind is the fact that the thermomachines around the station dump their heat collected from cooling gasses directly into the waste loop. Common sources are the cryo tubes in Medical and the machines in the Ordnance Lab. Waste tends to collect only a small amount of CO2 (which is filtered back into waste) to act as a buffer to absorb said heat. With this low amount of gas, it absorbs the heat VERY poorly and suddenly the station's waste line is a couple thousand degrees. Factor in any future fires that might add hot gas to the waste line, and this means the super hot waste gas coming into atmospherics for filtering are going to take forever to make it through the pumps and filters. Not good!

To fix this, you can add more CO2 to waste to act as a buffer for heat absorption, as well as setting up some sort of cooling for waste. This can be freezers or a heat exchanger array in space connected to the waste line. This is all entirely up to you how it gets cooled, but this is merely extra setup to ensure atmospherics runs well if you have the time to do it.


Done correctly, Atmosia should be pumping good air just faster than it's lost, and draining bad air away as fast as the traitors can set it on fire or alternatively draining good air away as fast as a malf AI can siphon it. You can go kick back in the bar like a boss and wait for the inevitable minor station damage and cries of "Call the shuttle!" on the radio from folks who don't even know it ain't a big deal.

Your Very Own Customized Mix

To create a custom mix of gas, turn on the output of the supply control computers, open the manual valves, and turn the output of the pump to what you wish it to be. The gas will travel through the yellow pipes into the mixing chamber. The gas mix is pumped into the mixing chamber via a pump north of the yellow loop.

The mix obtained can then be pumped into the distribution and filtering loop or used to fill canisters. Remember to turn off the pump between the yellow and red pipe network or your custom mix will just go into the red waste loop.


Atmospherics and The Station

Over the course of the shift, various parts of the station might regrettably explode and vent out your precious, precious air. This is where you come in. Grab your nearest metal or Rapid Construction Device Rcd 0.png and rush off to seal the breach. Grab adequate pressure and temperature protection if you have not. If your distribution loop is ready, refilling should be absolutely easy. Rush to the air alarm in the corresponding area and fill the air by interfacing with the Air Alarms AirAlarm.png. You might expedite the process by setting the operating mode to "Refill" or even to turn off external pressure checks by manually setting each vents under "Vent Controls" to Internal and 0 kPa. Alternatively, hauling some canisters of air Air Canister.png, a portable pump filled with air PortablePump.png, or even deploying a few Proto-Nitrate crystals Файл:Proto nitrate crystal.png if you've made some can all help refill the air even faster.

Over the course of the shift, the environment might become cold or hot too. Common sources of coldness include space and icemoon wind rushing in, check for opened airlocks! Common sources of heat are usually gas combustion Plasma Canister.png Tritium.pngHydrogen canister.png and Pyroclastic Anomalies. To combat the temperature problems, there are many things that you could do:

  • You could utilize Space Heaters SpaceHeater.png, though their efficiency is questionable unless you upgrade their micro-lasers and capacitors to stretch out their battery life.
  • You could cycle the air AirAlarm.png; be it from the "Cycle" Operating Mode or from manually Panic Siphoning and setting the air to Refill.
  • You could even build a thermomachine Freezer.gif and haul a portable pump PortablePump.png to a location and keep cycling the air locally. This will heat up or cool down the air very quickly.
  • Your trusty ATMOS Resin Waterbackpack atmos.png will also set air to 20 degrees Celsius and might be of great use here, but keep in mind that it seals scrubbers and vents off.
  • You also have the holofan Holofan.gif to prevent the cold from spreading further.
  • If you've made them in the Crystallizer, Healium crystals Файл:Healium crystal.pngare quick and effective at correcting temperature issues. Just activate and throw em in!

You have great tools at your disposal, but also a great adversary to face. Good luck in your job as the Custodian of The Air!

Atmospherics 201: Gaseous Synthesis, Machinery, Further Theory, and Optimization

The Gases and Their Functions

Let's start with some theory about the gases. Below are the different gases that can be found in-game.

Quick note: The endothermic and exothermic descriptions in these gaseous reactions are measured with respect to enthalpy. Heat capacity can change, and this means that there might be cases where you have an exothermic reaction but the temperature is actually falling. Experiment!

Gaseous Export: Gas canisters can be exported through cargo in exchange for money. They are however, subject to elasticity and will give diminishing returns for each mole exported. Gases will roughly fall to half their credits per mole value at around the 2100 moles mark, quartering at 4201 moles, and becoming one tenth of their original base export price at 6978 moles. This diminishing returns are tracked individually per canister.


O2 Canister.pngO2

Our first base gas is Oxygen. All humans, pets, and lizard-people need more than 16 kPa of oxygen in the air or internals to breathe. Any less and the creature starts to suffocate.

It is required to oxidize fires. The specifics of each fire reaction will be detailed down below.

Oxygen is an invisible gas. To detect it, use your PDA or a wall mounted Air Alarm. Oxygen canisters are marked in blue. Emergency Oxygen Tanks, filled with about 300 kPa, spawn in your emergency Internals Box. Larger Oxygen Tanks are in Emergency Lockers all across ship, which start with about 600 kPa.

Export price per mol: 0.2 credits


N2 Canister.pngN2

Our second base gas is Nitrogen. Not particularly more heat absorbent than any other gas. However, it cannot burn at all, which may slow down fires simply by taking up space. It can reduce the heat penalty on the SM, which will keep temperatures down.

Export price per mol: 0.1 credits


Air Canister.pngAir

A 1:4 gasmix of O2 and N2 (20% O2, 80% N2). The station is filled with this.

Air in SS13 can be seen, strangely enough, as a 'watered down'-O2, with N2 being the water. Optimal atmospheric pressure for humans is 101.3 kPa. Due to the minimum of 16 kPa of O2, the pressure of 101.3 kPa cannot be changed too much without the situation becoming excessively lethal. Under 16 % oxygen? You start dying. Under 90 kPa due to fire from a while ago? You start dying. Be mindful of this.


CO2 Canister.pngCO2

The third gas available for atmosians from the start of a shift: Carbon Dioxide. What the fuck is Carbon Dioxide!? It's an invisible, heavy gas. It chokes people effectively and quickly, and if you can be bothered to set the alarms up, will result in a invisible room that kills those in it. Takes some setup and can be very, very annoying. Causes people to gasp at low levels. It is also often used to beef up the power generation of the Supermatter Crystal.

Export price per mol: 0.2 credits


Plasma Canister.pngPlasma

Our fourth and the most infamous of the base gases: Plasma, a.k.a. Toxins. Plasma is purple, toxic, and flammable. When ignited in an oxygenated room it will produce fires.

Plasmafires use oxygen and plasma to produce heat and waste gas. Energy released from plasmafires depends on the burn rate for plasma. The plasma burn rate itself depends on the composition of the air and the temperature of the burn. Optimal composition for maximum burn rate is 10x more O2 than Plasma, with the air temperature exceeding the upper limit of 1643.15 Kelvins. Oxygen is burned at 0.4x the rate of plasma at temperatures above the upper limit. More oxygen (up to 1.4x the plasma burn rate) will be consumed for lower air temperatures.

The aforementioned waste gas of plasmafires are either solely tritium on oxygenated plasmafires (more detail on the tritium section below) or water vapor and CO2 on a 3 CO2 : 1 H2O ratio on non-oxygenated plasmafires.

Export price per mol: 1.5 credits


N2O Canister.pngN2O

The final base gas available in the atmos tanks: Nitrous Oxide, a.k.a. Sleeping Agent. A white-flecked gas.

Makes you laugh at low doses and at higher ones puts you to sleep. If using this as a sleep gas mix do not forget to mix in at least 16 kPa of O2, or you will suffocate someone. This decomposes into Nitrogen and Oxygen at temperatures at or over 1400K, creating Nitrogen equal to the amount of N2O used, and half that amount in Oxygen.

Export price per mol: 1.5 credits


Tritium.pngTritium

Radioactive, flammable gas that is used in plenty of chemical reactions. Created by heating loadsa O2 with Plasma. Emits radiation when combusted in the air, as well as pipes and canisters. Might not want to put this into any engine unless you plan to set it on fire.

Tritium is created in fires that are super saturated, i.e. fires where there are 96 more units of oxygen than plasma. One popular ratio used by many Atmosians is 97 O2 : 3 Plasma, this wont hit the super saturation threshold from the get go, but given time the oxygen input will overflow the oxygen burn rate, resulting in a net positive oxygen gain in the chamber and eventually hitting the threshold. This oxygen accumulation continues over time, and therefore it is a good idea to lower the oxygen ratio in the burn mix over time. It is recommended to bump up the plasma ratio to 50% after ignition, as that will allow more plasma to get put in and burned, while maintaining composition.

Important to remember is that tritium will likely be very hot when exiting the chamber, opening possibilites of cracked canisters and eventually toasted incinerators. Prepare accordingly! It is also worthy to note that tritium when allowed to react with oxygen will burn up into water vapor. Due to the chamber having a lot of oxygen, it is often a good idea to add a second scrubber to prevent too many tritium from being lost. Keep this in mind when attempting to get sizable amounts of it.

Tritium can burn very quickly when exposed to lots of oxygen, and can release enough energy to melt the hull in a short amount of time.

Export price per mol: 2.5 credits


Water vapor.pngWater Vapor

Pure H2O. Keep away from the Clown - this slips people and even freezes tiles when released at low temperatures.

The Janitor starts with a tank in his closet; created as a waste product on tritium fires and unsaturated plasma fires.

Export price per mol: 0.5 credits


Hydrogen canister.pngH2

Hydrogen is a flammable gas which when ignited burns similarly to tritium. It is also an integral part of fusion reactions. Hydrogen is made by electrolizing Water Vapor with an electrolyzer machine.

Hydrogen is solidified in the Crystallizer with BZ as catalyst at high heat and pressure (around or above 10,000K) to produce metal hydrogen Metal hydrogen sheet.png, which can be used to make Elder Atmosian armor, a fireaxe Metal hydrogen fireaxe.png, and golems.

Export price per mol: 1 credits


BZ canister.pngBZ

BZ gas is a potent hallucinogenic that also puts slimes into stasis and degenerates changeling chemicals. When the partial pressure is over 10, those breathing it will have a 33% chance per tick to get 3 brain damage, up to a maximum of 150. BZ sees frequent use as an ingredient/catalyst in many gas reactions.

BZ is formed in an exothermic reaction when at least ten moles of each N2O and Plasma are combined at low pressures. The optimal pressure for this is 0.1 atmosphere, or about 10 kPa. Efficiency might be higher if you get it even lower somehow, though. Plasma is consumed at 2x the rate of N2O.

If mixed in a tank with oxygen, it can be used for internals, to encourage spiritual development. Breathing it also produces BZ Metabolites.

Export price per mol: 1.5 credits

Pluoxium.pngPluoxium

A non-reactive Oxygen substitute that delivers eight times as much O2 to the bloodstream, with as little 3 kPa minimum pressure required for internals!

Pluoxium may be created by exposing O2, CO2 and Tritium together in an exothermic reaction between 50 K and 273 K. This reaction creates a minimal amount of H2 (1% of Pluoxium created) as a byproduct. The consumption ratio for this reaction is 100 O2 : 50 CO2 : 1 Tritium. Furthermore, Pluoxium is also created by the Supermatter, when Oxygen and CO2 are present. Oxygen is created by the Supermatter itself when it's running, with the quantity of this production based on various other factors. Adding some CO2 to the Supermatter can be an easy way to produce Pluoxium!

Export price per mol: 2.5 credits


Miasma canister.pngMiasma

Miasma (bad air) is created from bloomed Corpse Flowers. Miasma smells bad and can cause diseases to spontaneously appear. The higher concentration of miasma in the air, the higher level symptoms can appear. Sterilized into oxygen in a slightly exothermic reaction at 170 degrees Celcius. Presence of water vapor in quantities higher than 0.1 moles prevents this from happening. This reaction has the lowest priority out of all reaction in the game. It is otherwise absolutely inert in terms of atmos reactions.

Export price per mol: 1 credits

Nitryl no2.pngNitrium

Nitrium (a combination of the old gasses Nitryl and Stimulum) is a gaseous stimulant that when inhaled can enhance speed and endurance. At low concentrations Nitrium will increase your top running speed while healthy and unimpaired. At slightly higher concentrations breathing Nitrium will form Nitrosyl plasmide in the bloodstream, providing immunity to sleeps. This is in addition to the speed boost. Damage slowdown from stamina damage (stun batons!) will still slow you even with the stun immunity. At high concentrations breathing it will damage a person's lungs.

Nitrium is made by combining a minimum of 20 moles Tritium, 10 moles Nitrogen and 5 moles BZ in a (slightly) endothermic reaction above 1500K. The consumption ratio for the reaction is 20 N2 : 20 Trit : 1 BZ. Higher heat improves the rate of reaction. Also formed in high quantities by fusion.

Nitrium decomposes exothermically when in contact with Oxygen under 343.15 K, splitting into a 1:1 mix of Nitrogen and Hydrogen. Meaning you will have to experiment to find a way to breathe Nitrium and not suffocate while doing so if you wish for ultimate power.

Breathing Nitrium in high concentrations will quickly cause lung failure, make sure that Nitrium makes up a minority of your tank.

Export price per mol: 6 credits


Freon canister.pngFreon

On temperature lower than 0°C (273.15 K) Freon will create an endothermic reaction with O2, meaning it will absorb heat from the atmosphere, down to a minimum close to 50K. Adding Proto-Nitrate will catalyse the reaction so that it may begin at temperatures up to 310 kelvin, which is above room temperature. This reaction produces CO2 and if the temperature is between 120-160K the reaction has a small chance to also produce solid sheets of hot ice Hot ice.gif.
Breathing Freon causes burn damage.

Freon is made by combining a minimum of 0.6 mol of Plasma, 0.3 mol of CO2 and 0.1 BZ, with reaction speed depending on temperature, as depicted in the graph below. The reaction is endothermic. The consumption ratio for the reaction is 6 Plasma : 3 CO2 : 1 BZ, forming 10 moles of Freon. Unless you're able to push the reaction into high temperatures, it is best to try and maintain a temperature of 800K. The energy consumed by the reaction also scales up as temperature increases, so it may be harder to maintain a high temperature than one might expect.

Файл:Freon graph.png

Export price per mol: 5 credits

Hot ice.gifHot Ice

Hot ice is a solid byproduct of the cooled Freon+O2 reaction at 120-160K. Can be sold to cargo at a high price. It holds a great amount of power inside. Can be ground to produce 25 units of Hot Ice Slush.

If hit with a welder or burned the hot ice will melt, releasing the power stored inside. This releases large amounts of hot plasma into the air. (Moles of plasma released = 150 x number of sheets) and (Heat released = 20 x number of sheets + 300K).


Файл:Hypernoblium canister.pngHyper-Noblium

Extremely inert, Hyper-Noblium stops other gases from reacting. (Specifically, it stops reactions when >5 moles and temp > 20 K)

Can be created when Nitrogen is combined with Tritium at extremely low temperatures (below 15 K). Reaction produces significant energy (exothermic) and BZ works to reduce the energy released, expect to have your temperature spike if you don't use BZ, the energy released is potent enough to be used for explosives! 10 mol of Nitrogen is used per mol of Hyper-noblium synthesised, and you also need at least this much to have the reaction occur. 5 mol of Tritium is the minimum required to have the reaction occur, and is the amount used when no BZ is present. However, the amount of Tritium used scales with the ratio of Tritium to BZ, all the way down to 0.005 mol used in a ratio of 1:1000 Tritium:BZ. In short: keep your BZ high and your Tritium low if you want to make a lot of this stuff!

Export price per mol: 2.5 credits

Proto nitrate canister.pngProto-Nitrate

Proto-Nitrate is a highly reactive gas, but non-toxic when breathed. It is created in an exothermic reaction when Pluoxium is exposed to H2 at temperatures between 5000-10000 K. Hydrogen is consumed at around 10x the rate of Pluoxium.

  • When between temperatures of 260-280k, Proto-nitrate reacts with BZ to produce radiation, Nitrogen, Helium, and Plasma, as well as causing localized hallucinations, releasing radiation, including extremely high energy nuclear particles in an exothermic reaction.
  • When between temperatures of 150-340k, Proto-nitrate reacts with tritium to produce H2 and radiation in an exothermic reaction.
  • Proto-Nitrate reacts with at least 150 moles of H2 to create more Proto-Nitrate in an endothermic reaction.

Export price per mol: 2.5 credits


Halon canister.pngHalon

Halon acts as a fire suppressant by removing oxygen in the air (while producing CO2) in an endothermic reaction if the air temperature is above 100 C or 373.15 K. The oxygen suppression rate is 20 O2 : 1 Halon. It is created in a slightly exothermic reaction between CO2 and N2O in turfs with an active electrolyzer on them, below 230K, and at low pressure. 2 moles of CO2 are used and 1 mol of N2O is used.

Export price per mol: 4 credits


Healium canister.pngHealium

Healium (not to be confused with actual Helium) is a red gas which acts as a stronger sleeping agent than N2O, while healing burns, bruises, suffocation and toxin damage.

It is created by exposing Freon to BZ in an exothermic reaction at temperatures between 25-300 Kelvin (keep it chill). Freon is consumed at around 11x the rate of BZ; a little bit of BZ will very quickly transform all of your Freon into Healium if you're not careful.

Export price per mol: 5.5 credits


Cyrion b canister.pngZauker

Zauker is an incredibly deadly gas if inhaled. It is made by mixing Hyper-Noblium and Nitrium in an endothermic reaction at temperatures between 50000-75000 K. Nitrium is consumed at around 50x the rate of Hyper-Noblium. It is worthy to note that Hyper-Noblium stops reactions when it is present in quantities above 5 moles, prepare accordingly!

Zauker also decomposes exothermically into a 30/70 O2/N2 mix when exposed to Nitrogen.

Export price per mol: 7 credits


Файл:Helium canister.pngHelium

Helium is an invisible, inert gas. It has minor use within the Crystallizer to make a Crystal Cell, but otherwise is functionally useless. Sell it to cargo!

Helium is produced as a common byproduct of fusion in the Hyper-torus Fusion Reactor, or from a Proto-Nitrate/BZ reaction.

Export price per mol: 3.5 credits

Файл:Antinoblium Canister.pngAnti-Noblium

Anti-Noblium is a rare gas used in high level Crystallizer recipes and as high tier fuel for the Hyper-torus Fusion Reactor. Outside of those uses, it doesn't do all that much. It does look pretty when in the air though!

Anti-Noblium can be made within the Hyper-torus Fusion Reactor when using Hyper-Noblium as the primary fuel with either Hydrogen or Tritium as the secondary fuel. It can also be created with #Hyper-Noblium in turfs with an active electrolyzer at under 150 kelvin, with a rate of 0.5 moles of Anti-Noblium per 1 mole of Hyper-Noblium.

Export price per mol: 10 credits

Physical Characteristics of Gases

TL;DR Gas flows from high pressure areas, to low pressure areas. Gas uses up more room when hot, less room when cold.

Ideal gas law: PV = nRT

Where R (ideal, or universal, gas constant) = 8.31, the following are linked by this equation.

Pressure (P): Measured in kPa, kiloPascals, Pressure is lethal above 750 kPa's. A pressure in a room above 1000 kPa's necessitates internals to breathe properly.


Volume (V): Another unseen variable, Volume is how much the area/canister/tank or piped tank has space inside it. This helps dictate how much gas it can hold. Volume is essentially the 'mole divider' when converting between a canister/air pump to your tank; having a higher volume essentially makes the tank that much more efficient, proportionally, so an Extended Emergency Oxygen Tank has twice the contained air per kPa in comparison to a regular Emergency Oxygen Tank.


Item Volume
AirTank.png Emergency Oxygen Tank 3
Extended Emergency Oxygen Tank.png Extended Emergency Oxygen Tank 6
Extended Emergency Oxygen Tank.png Double Emergency Oxygen Tank 10
OxygenTank.png Oxygen Tank (blue/red) 70
Plasma tank.png Plasma Tank 70
Atmospheric Pipe.png All pipes 70
Gaspipe.png Pipe manifold 105
Locker.png Locker 200
Coffin.png Coffin 200
Ppump.png Gas Pump (each side) 200
Vpump.png Volumpe Pump (each side) 200
Passpump.png Passive Gate (each side) 200
Heat exchanger.png Heat Exchanger 200
Atmos filter.png Gas Filter 200
Vent.png Vent 200
Scrub.png Scrubber 200
Manifold.png Layer Manifold 200
PortableScrubber.png Portable Scrubber 750
PortablePump.png Portable Pump 1 000
Canister.png Gas Canister 1 000
Wire 1 1.PNG Tile / turf (any area) 2 500
Pressure Tank.png Pressure Tank 2 500
Huge Scrubber.png Huge scrubber 50 000


Moles (n): Moles are the amount of particles of a gas in the air. It is moles that cause odd effects with a certain chemical. As it dumps so many moles to a tile, to keep the pressure acceptable, the moles have to be very, very cold, causing the infectious effect. Moles can be calculated by a form of the ideal gas law. n=(P*V)/(R*T)

Temperature (T): Measures in K, Kelvin, Temperature above 360 K and below 260 K causes burn damage to humans. Canisters rupture when the air surrounding them is over 1550 K.

Heat Capacity: A gasmix has heat capacity, and it is calculated by taking into account the quantity of all of the gases in the air and their specific heat. Heat capacity defines how much energy it takes to raise the temperature of a gas. The normal air mix (%30 O2, %70 N2) has a specific heat capacity of about 20 which doesn't impede heat transfer very much. Fires spreads quicker in gases with low heat capacity, and slower in gases with high heat capacity.

Gas Specific heat capacity (molar)
O2 20
N2 20
CO2 30
N2O 40
Plasma 200
Tritium 10
Water Vapor 40
Hydrogen 15
BZ 20
Pluoxium 80
Miasma 20
Nitrium 10
Freon 600
Hypernoblium 2000
Proto-Nitrate 30
Halon 175
Healium 10
Zauker 350
Helium 15
Antinoblium 1

Fire: An effect caused by the ignition of plasma, tritium, and hydrogen in an oxygenated room. It causes massive burn damage, and raises the temperature of the room.

In short the colder the gas and the higher the container volume, the more moles you can fit inside. This is why hot gases clog the red waste pipes - they expand, allowing fewer moles to be transported.

Breathability

Do note that breathing is based on pressure and not moles! Moles breathed has no bearing on suffocation, only on gas consumption.

Humans need 16 kPa of O2 to survive. When not breathing through internals this 16 kPa is supplied by the environment, with a normal 21-79 mix of 101 kPa O2-N2 supplying 21 kPa of Oxygen to the lungs.

For internals this means that you are going to need a minimum of 16 kPa release pressure on the tank (adjusted by clicking the tank while in hand). Unpure mixes will require a higher release pressure to be breathable!

Consumption

The consumption rate for gas is dictated by the moles breathed in, all oxygen intake will be consumed and turned into carbon dioxide. Lungs are considered to be 2 Litres. Mole consumption works as follows:

  • For most scenarios this is equal to 2/2500th of the environment gas.
  • For internals this is further modified by the release pressure of the tank, with the breathed gas targeted to reach whatever release pressure set when inside the lungs. You can calculate this by using n = Release Pressure * 2 Litres / (8.31 * Temperature). A higher temperature will mean less gas will be breathed in per tick. This does not mean a longer internal! since the ratio of gas breathed in to the total gas in tank is still the same.

Temperature

Creatures start taking damage when the air breathed in is colder than 260 Kelvins or hotter than 360 Kelvins! This is separate from the cold or hot damage taken because a mob is too cold or hot though. There are damage increases in temperatures colder than 200 and 120 Kelvins or temperatures hotter than 400 and 1000 Kelvins. This damage is further multiplied for species such as lizards who take 3/2 times as much cold damage but 2/3rd as much hot damage.

Notes on optimization

  • Pluoxium is considered to be 8 times as potent as Oxygen for breathing I.E. each kPa of pluoxium counts as 8 kPa. It's possible to run a pluoxium tank with release pressure as low as 2 kPa for a longer lasting internal.
  • If external efficiency is important, it's possible for a hotter internal mixture to be made to conserve the amount of moles while still supplying an equal amount of partial pressure to the lungs.

Thermomachines

Combined entity of freezer and heaters, thermomachines allow you to influence the temperatures of gases connected to it. Thermomachines heat or cool the gas in their port to the target temperature.

A thermomachine "combines" the gas mixture actually present inside it with a gas mixture of a set temperature (depending on the user input) and heat capacity (depending on the quality of matter bins present).

Fusion

For a much more in-depth look to the Hypertorus Fusion Reactor, see Guide to the Hypertorus Fusion Reactor.

So you want to operate a fusion reactor? Well, it's about as dangerous as it sounds. On /tg/station, fusion has been redesigned several times and is currently on version 7: "Hypertorus Fusion Reactor (HFR)"-edition.

In version 7 of fusion, you must build a machine called Hypertorus Fusion Reactor. The HFR is a 3x3 multi machine that needs the proper setup to be built. In most maps you'll find a proper space with outlines on the floor to designate where to put each piece.
HFR initial area.png

Click expand to see the how to build the HFR.

First thing first, you need to build the core of the machine. This piece has ONE port that is used for cooling the internal fusion mix, you can rotate the machine simply by using a screwdriver and a wrench (similar to how you rotate a freezer/heater)
HFR core vertical.png HFR core horizontal.PNG
after the core is done, build the 4 corner pieces in the corners of the grid and the 4 ports for fuel, moderator gases, waste and interface. The result should be something that looks like this:
HFR built.PNG
finalize it by hitting the interface with a multitool
HFR initialized.PNG
A little piece of paper will show up, it contains tips on how to operate the machine that you won't find here, so read it carefully!


Now that you know how to build it, let's see what all those buttons do by starting from opening the interface.


HFR Interface top.PNGHFR Interface bottom.PNG

Click expand to see how to operate the HFR Interface.

The interface it’s quite big and it has an overwhelming amount of informations but we’ll go through them one by one (you can also scroll to access all infos)

HFR i switches.PNG
Those are the main controls, they control how the machine will behave
-Start Power starts the machine main loop and allow power drain and activates the other controls
-Start cooling starts the machine cooling loop, the one connected to the core
-Start fuel injection starts the fuel injection in the machine which will start the main fusion loop and thus starting the reaction itself

HFR i gasmixes.PNG
This will contain the gas mixture of the fusion gases and the moderator gases

HFR i parameters.PNG
Those are the main parameters of the fusion reactor
-Power level goes from 0 to 600, from it depends the amount of power consumption (from 50 KW at PW 0 to 350 KW (it will be higher in the future)), the volume of the noise the machine makes, the damage the machine will take, the ability to turn off the machine safely (at high power level you can’t), fuel consumption, various other gas reaction/interactions.
-Integrity indicates the integrity of the magnetic containment field inside the machine, if it reaches 0 the machine will explode, is controlled by how many moles of gas are inside the fusion gasmix and their temperature and by other factors.
-Iron content is the amount of iron being produced inside the reactor, at high amounts will actively lower the integrity by damaging the fields, can be lowered by lowering the fusion temperature.
-Energy levels depends on the amount of moles inside, the kind of gas inside and the moderators too will have different impact.
-Heat limiter modifier will change depending on the power level, will limit the amount of heat the fusion can increase/decrease each tick (hotter gases are easier to heat up/cool down)
-Heat output is the main parameter affecting the temperature of the fusion reaction, is limited by the Heat limiter modifier and is affected by many other factors.

HFR i temperatures.PNG
Those will show the gases temperature in real time
The flow of heat is Fusion > Moderator > coolant
(output gas will have either moderator or fusion temperature depending on the source)
If you don’t add a moderator the heat will go directly from the fusion to the coolant, but is much more inefficient.

HFR i inputs.PNG
Those are inputs that the user can change
-Heating Conductor will change the Heat limiter modifier, higher numbers means higher heat transfer. The Heat limiter modifier will affect the Heat Output by increasing/decreasing the maximum range possible; keep it at 100 for normal operations.
-Magnetic Constrictor will actively change the volume inside the fusion reactor, this affect instability and power output. Increasing the number will increase the volume available to the fusion gases, allows higher instability fluctuations and increases the influence of every gas inside the machine (positive and negative influences). Keep at 100 for normal operations.
-Fuel and moderator injection rate will change how much gas will enter the machine this affect consumption, and other gas related interactions
-Current Damper, life saver, will actively increase the instability of the fusion reaction making the reaction endothermic, that can set the heat output to negative cooling down the fusion mix, useful in meltdown situations. Counteracted by iron content.
-Waste remove will start to output helium/antinoblium at a fixed rate from the fusion mix and the gas you set to filter from the moderator mix allowing the user to filter out specific gases from the moderators

And now let's learn what each gases will do inside the machine

Click expand to see the HFR gas interaction section.

First thing to learn is the fuel: only a mixture of Tritium and Hydrogen will enter the fuel input port, no other gases will go inside (at least for now)

The moderator gases are special gases that have a double function, first they allow proper cooling for the core, second they have interactions with the functioning of the fusion reaction itself, those interactions are:
-for the fusion gasmix:
--Hydrogen = increase the energy of the system and increase the heat modifier
--Tritium = increase the energy of the system and increase the power modifier
--Helium = decrease the energy of the system, increase the heat modifier and increase the radiation modifier
-for the moderator gasmix:
--Nitrogen = increase the energy of the system, decrease the heat modifier and decrease the radiation modifier
--CO2 = increase the energy of the system and increase the power modifier
--N2O = increase the energy of the system and decrease the heat modifier
--Zauker = increase the energy of the system and increase the power modifier
--Antinoblium = vastly increase the energy of the system and vastly increase the radiation modifier
--Hypernoblium = vastly decrease the energy of the system
--H2O = decrease the energy of the system
--NO2 = decrease the energy of the system and increase the power of the system
--Healium = decrease the energy of the system
--Freon = decrease the energy of the system, decrease the power modifier, decrease the heat modifier and decrease the radiation modifier
--Oxygen = decrease the power modifier
--Plasma = increase the power modifier, increase the heat modifier and increase the radiation modifier

Now you know how to build and operate the HFR - Hypertorus fusion reactor! Many other informations and tips are provided in game in the proper pamphlet after activating the machine, enjoy!

Crystallizer

The Crystallizer is a machine that allows gases to be solidified and made into various materials.

The working principle and gaseous requirements behind the crystallizer is rather simple and explained in the machine itself. You select a recipe, pump gases in using the input (green) port, meet the temperature requirements, and wait for the material to finish crafting. The red port is used for heat control, as it will conduct with the internal mix and influence the temperature. You have a 10% wiggle room for the temperature requirements, but straying too far from the optimal temperature will influence the final quality of the item produced. Quality affects the amount of gas consumed for each product produced, with higher qualities consuming less gas. The optimal temperature for any given recipe is the median between the lower and upper temperature bound. Stay as close as you can to the median value, and you'll be able to save up to 85% of the required gas if you manage to make the highest quality!

It currently supports the production of:

Item Properties
Metallic Hydrogen A crafting material used for golems, axes, or the Elder Atmosian armor set.
Hyper-Noblium Crystal A two use potion that can be used to pressure-proof two clothing items, turning them an icy blue color.
Healium Crystal A grenade that can fix a large are of air to more reasonable temperatures. Good for firefighting and freezing temperatures.
Proto-Nitrate Crystal A grenade that can refill a room with nitrogen and oxygen with a 8:3 split respectively.
Nitrous Oxide Crystal A grenade that will release Nitrous Oxide (Laughing Gas).
Hot Ice A material normally prodouced by freon combustion, also craftable with the Crystallizer.

When weldered or burnt, it rapidly releases a very hot and dense cloud of plasma gas.

Ammonia Crystal A material with not much use except for exporting. Makes 2 every time it's completed.
Supermatter Shard A smaller version of the extremely dangerous Supermatter Crystal used for power generation.
Diamond A sheet of diamond. Many crafting and manufacturing applications. Used thorough the station.
Plasma Sheet A sheet of plasma. Many crafting, manufacturing, and biological applications. Used thorough the station.
Crystal Cell A non rechargeable cell with a huge power capacity. Rated at 50 MJ.
Zaukerite A material without much use except for bragging rights. Makes 2 every time it's completed.
Drone Fuel Pellets Three separate recipes that create Fuel cells used for drone explorations in Cargo.

Comes in three qualities denoting the difficulty of gases used.

Crystal Foam Grenade A grenade that functions exactly like the standard Smart Metal Foam grenades that can be found roundstart.

Extremely simple to make compared to most other recipes.

Nitrium Crystal A grenade that on detonation releases a chemical smoke cloud containing chemical Nitrium and Nitrosyl Plasmide.

Bluespace Gas Vendor

This is the hub for gas purchase done by the crew. You only need to pipe your gas in and it will distribute it across vendors available station-wide. You can also set a price per mole for the gases. The gas will be at 20 degrees Celsius and is capped at 1013 kPa when purchased by the crew, do keep this in mind. You can also refill the individual vendors with metal for it to make more tanks.

After the Work is Done

This is a section dedicated to various tips and tricks, trivia, and things that you could do in your spare time:

  • First and by far most important: make sure pipes don't get broken and if they do, fix them.
  • Go around swiping your ID on Air Alarms, setting the operating mode to contaminated, and then re-swiping to lock it. You can ask the AI to do this as well, and probably should.
  • Fill all the air pumps with air using a volume pump, these work until 9000 kPa compared to the pressure pump's 4500.
  1. Go to the red lockers, get a hard hat, gas mask and everything else that might be of use. Remember that you need both a fire suit and a hard hat to be resistant to weak fires. One will be useless without the other.
  2. Go grab the Fire Axe from the wall mount and hide it somewhere so the chucklefucks won't get it and go killing. DON'T take it with you and go walking through the hallways trying to look like a badass, you'll be the prime target of any antagonist/griffon who needs an efficient weapon.
  • Least importantly, maintain the disposals system. You can generate pipes, but it needs welding and is generally a pain in the ass. You can also make fun slides, though.
  • Using H/E pipes in space you can cool things down to a very low temperature very quickly. By making a cross with two off them you can have two on
  • Gas pumps are for precise pressure control, volumetric pumps are for really fast pumping, and passive gates are for having 'one way' manual valves.
  • Extremely high-temperature gases (like those from a panic siphoned fire) can really clog the waste loop. Could you do something to correct that?
  • No one uses the ports outside of the 'refilling' station, but that doesn't mean that functionality can't be added onto them!
  • The wall section that looks like the letter 'I' can be dismantled if you need more working space for pipes.
  • Don't count out the grated window areas, they can be a great (har har) way to utilize the vacuum of space without an EVA suit.
  • Speaking of EVA suits, your engineering buddies can potentially help you with anything you might want to do in space, be it adding or modifying pipes. Watch the hilarity as that incompetent engineer fumbles when setting up a heat exchanger pipe loop!
  • The mining station doesn't have air recycling. Very long rounds might make this a problem for any miners working there.
  • Any gas at pressure over 1000 kPa will cause you to start suffocating as in a vacuum. You can just use internals, though.
  • N2O is invisible at low pressures. If you start giggling, put on your internals to avoid passing out.
  • Any gas can displace O2, and less than 16 (also useful for optimizing internals) kPa of oxygen starts the Oxyloss. CO2 can be removed with the scrubbers, but to get rid of N2 simply apply some way of removing gas from the air and adding O2. My personal favorite is 2 air pumps, 3 connectors and an Air Filter and a canister: 1 pump draws in, goes through the connection and filters N2 into the canister, and the rest to the other pump, which expels it. Can also be used for N2O which is only sluggishly scrubbed otherwise.
  • Pressures above 750 kPa do 10 DPS + 5 DPS for every extra 375 kPa above that mark, rounded off. Space suits completely block it all, but there is no other defense.

Atmospherics 301: Pipeline and Pipenet Theory; LINDA: Active Turfs & Excited Groups; Superconduction

LINDA? What is LINDA? LINDA is our atmospherics system. There are various theories on the origin of this name, but that is not why we are here. We are here to understand how gas dissipate, how pipelines and eventually pipenets are formed, and the more technical parts of atmospherics.

For a technical breakdown of our atmospherics subsystem and how everything works, refer to https://github.com/tgstation/tgstation/blob/master/code/modules/atmospherics/Atmospherics.md

Pipeline and Pipenet Theory

If there is one part of Atmospherics 301 that you should read, this is it.

Pipenet Explanation

Our pipes does not simulate flow. Every interlinked pipe is combined into a single pipeline, and every pipeline member is subject to gas sharing. This gas sharing is instantaneous. Lets take the picture on the picture to our right as an example. The gas from the canister will immediately appear on the first node of the volume pump because both of them are connected through the same pipeline, even if the pipes are ten, twenty, or a hundred times longer. As long as two things are part of the same line they will equalize instantly.

The amount that each part of the pipeline gets in the aforementioned gas sharing process is determined by their volume. The first node of the gas pump will get 200/(210+1000+200) of the gas present in the pipeline, the pipes themselves will get 210/(210+1000+200), and the canister will get 1000/(210+1000+200). Most atmospheric devices perform actions only on the gas directly present in their nodes. The pump will only be able to pump this 200/(210+1000+200) portion of the gas allotted to it to the second node. The pipeline will then redo the gas sharing, just with less gas in it (because a part of it has been pumped away), and the process can repeat again.

This means that for bigger and bigger pipelines, each machinery will have a smaller and smaller share of the total volume and will be able to perform work on less and less gas. This is why taking gas out of the huge distribution loop is tedious and long, this is why some supermatter setups will lack moles directly inside the chamber if you expand the cooling space loop too much, this is why thermomachines are less reliable on very huge pipe networks.

LINDA: Active Turfs and Excited Groups

Our atmospherics system: LINDA, work based of concepts of active turfs and excited groups. A turf (tile) will become active when any gas changes happen, be it a plasma canister being opened, a breach occuring, or as simple as scrubber taking CO2 out. A turf will also become activated if a wall is deconstructed, necessitating it to be filled. These active turfs will combine into an excited group and equalize every several iteration of the subsystem ticking. This is LINDA in it's simplest, most abridged form.

Superconduction

On high temperatures, superconduction occurs. Superconduction transfers heat between gases in the air and the objects in the world, most notably floors, windows and walls. If these objects are too hot they will break or melt.

Another very visible effect of superconduction is on super hot turf based fires (incinerator springs to mind). Reinforced floors have the temperature of 20 degrees Celsius and a very very high heat capacity. This means that these reinforced floors will almost always never move their temperature and stay at 20 degrees. Very hot gas mixtures on top of reinforced floors will constantly try to share heat with the floor and lose energy. In other words, reinforced floors constantly cool your fires down. This makes reaching very high temperatures on turfs very difficult.

It is possible to try and circumvent this phenomenon by burning things inside a canister or pipes.

Stimulum.pngBeing a Traitorous Scum

Or: How to get the AI lynched; How to call the shuttle as Atmos Tech, step-by-step:

  1. Open valves connected to harmful gas you want to add to the station.
  2. Set pumps to the distribution loop to maximum pressure output (4500 kPa).
  3. Set filters to not filter harmful gasses you want to add to the station OR set the waste-in pump to 0 kPa (but leave it on to confuse the crew).
  4. Open valve from custom mix chamber.
  5. Turn on pump leading to distribution loop.
  6. Wait for vents to slowly kick out your deathgas mix as regular atmos drains out through the inevitable hull breaches (alternatively turn off pressure checks on air alarms' vents to speed things up).
  7. If you need to kill someone for your objective, and you want to be more proactive, the Fire Axe mounted in the wall is surprisingly effective. Just don't leave it lying around, because it's one of only two on the station.


To hurry this process up, you can set the air vents at local control panels to maximum output pressure. Not doing so gives the AI and Atmos Techs more time to notice what you've done and shut it off before it takes effect.


A faster process for achieving the same result is to do the following:

  1. Disconnect, change the direction of, and reconnect the pump that feeds from the air mix to the mix tank in the north-eastern room of atmosia.
  2. Open the valves for your deathgas mixture of choice.
  3. Power on and max the pressure on every pump in the mix pipes (yellow pipes) from the storage tanks out to the station output (blue pipes).


This simply means that instead of the air mix being put into the mix tank as it normally does, the air mix (which may or may not contain death gasses) is fed into the station output.


Crafty atmos traitors will want to cut cameras, replace pumps with pipes, use tricky pipe configurations to avoid the AI interfering or the detective trying to fix it and make a hole in the station's oxygen and air tanks, venting the entire round's supply of oxygen into space.


An extremely fast method that involves a clever use of the waste system is the following:

  1. Reconfigure the piping to connect the waste system directly into the pure pipes.
  2. Find a place with a waste pipe next to a distro pipe, then configure them so that they can be united later.
  3. Open the valves for your deathgas mixture of choice, the waste piping should now begin to fill with your gases.
  4. Disable the vent limits on every air alarm you can find.
  5. When ready, go back to your distro/waste pipe spot and unite them.
  6. Listen to screams over the radio.


Your powers don't extend to just fucking with the station's air. High level gas synthesis is a valid option and can grant you some crafty gasses and items to aid you in devious acts:

  • Nitrium is immediately the most obvious choice for brute force combat scenarios. Speed is incredibly strong and rare to see outside a few sources like chemistry or genetics. It also prevents you from sleeping so it can be combined with Healium for passive healing.
  • Healium has a strong healing effect but quickly puts you to sleep if you're breathing it. Perhaps you can find a way to stay awake while breathing it. Or you could use it as a stronger N2O to gas crowds of people with. It also sells at Cargo really well for how relatively simple it is to make, if you want to make use of what Cargo has to offer.
  • Tritium is notorious for creating roaring fires and can quickly send the crew into a panic if spread in large quantities. It doesn't take a genius to figure out where large amounts of tritium come from though, so expect unhappy visitors in atmospherics.
  • Water Vapor, a side product from tritium fires, can be collected in canisters to unleash in the halls as a sort of water bomb to make everything slippery. Consider an investment into no-slip shoes.
  • Freon can make things very chilly very fast, and combined with Water Vapor can create super slippery frozen tiles that send those who slip flying down the hall.
  • Pluoxium isn't incredibly useful for traitorous activities, but a full tank of it can let you camp out in space for a VERY long time if needed.
  • Zauker is... well, pretty bad for gassing places since it just turns into air when it comes into contact with nitrogen. However, a dedicated sealed chamber of it could be incredibly lethal for anyone stuck inside. Another idea is replacing the emergency tanks around the station with ones filled with pure Zauker, so that the next unfortunate soul who needs air gets nigh instantly killed upon turning on their internals. Consider sneaking these into people's pockets...
  • Hot Ice can be best described as pocket sized plasmafires. Much easier to target specific areas compared to plasmaflooding distro or dragging a big obvious canister of the stuff in. Ignite in hand while wearing your firesuit and drag any victims in to your new hellfire.
  • N2O crystals can be configured like grenades to detonate instantly like other grenades. Meaning, you could just walk up to someone and almost instantly put them to sleep by detonating N2O in their face, assuming they aren't using their internals.
  • Hyper-Noblium crystals can pressure proof your gear, allowing immunity to pressure hazards and removes the need for a hardsuit to spacewalk. Increasing survivability and mobility is always a plus.
  • Metallic Hydrogen and it's products are somewhat underwhelming but not to be forgotten. Elder Atmosian armor isn't great compared to some other options, but it does protect the limbs unlike a normal armor vest which is something to note. Metallic Hydrogen fireaxes are identical to normal fireaxes in function except for doing exactly one (1) less brute damage. Why? Fuck you, that's why. With 20 bars of your hard earned metallic hydrogen you can create a golem shell to make your own minions. Metal Hydrogen golems are immune to magic, flashes, heat and fire, but lose the cold and space immunity that all the other golems have. You'll never match xenobiology in the amount of golems you can create, but it's a nice option to have a golem bro help you in your deeds.


Other antagonistic things to do:

  • You can hack an air alarm to use it as a non-Atmos Tech.
  • You can remove the digital valves to shut down AI control, or disable the cameras if you know there are no Cyborgs on the station.
  • Using a gas filter turned on to pour large, ever increasing, amounts of gas onto a single connector port has no visible effects, but if you wrench a canister onto it then the canister will almost immediately fill up with the massive pressure buildup, letting you get super-high pressure plasma/CO2/etc canisters to hit area's with.
  • You can make a powerful single-tank bomb assembly gas mix by pumping in 2553kPa of plasma heated to 698.15 Kelvin into an empty handheld oxygen tank (not the small emergency ones).